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Magnetoconductivity of the disordered two- and three-dimensional superconductors is addressed at the onset
of superconducting transition. In this regime transport is dominated by the fluctuation effects and we account
for the interaction corrections coming from the Cooper channel. In contrast to many previous studies we
consider strong magnetic fields and various temperature regimes, which allow to resolve the existing discrep-
ancies with the experiments. Specifically, we find saturation of the fluctuations induced magnetoconductivity
for both two- and three-dimensional superconductors at already moderate magnetic fields and discuss possible
dimensional crossover at the immediate vicinity of the critical temperature. The surprising observation is that
closer to the transition temperature weaker magnetic field provides the saturation. It is remarkable also that
interaction correction to magnetoconductivity coming from the Cooper channel, and specifically the so called
Maki-Thompson contribution, remains to be important even away from the critical region.
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Magnetotransport measurements provide a direct access
to localization effects in disordered metals and superconduct-
ors. This is a sensitive technique to probe the nature of elec-
tron coherence and specifically, magnetoresistance experi-
ments opens a way to determine the electron dephasing time
����, which plays a key role in quantum-interference phe-
nomena. Negative anomalous magnetoresistance in metals1

is successfully explained by the weak-localization effect, see
Ref. 2 for the review. Situation becomes more interesting in
superconductors since in the vicinity of the critical tempera-
ture transport is dominated by the superconductive
fluctuations3 and one must necessarily account for the inter-
action corrections coming from the Cooper channel.4–6 The
existing theory of the magnetotransport in d-dimensional
superconductors2,7,8 predicts that excess part of magnetocon-
ductivity ��d�H�=�d�H�−�d�0� for weak spin-orbit scatter-
ing is given by

��d�H� = ��d
WL�H� + ��d

MT�H� =
e2

2�2�
� eH

�c
� d

2
−1

	�1 − 
�T��Yd��H��� , �1�

where �H=4eDH /c is the cyclotron frequency in a disor-
dered conductor and D is the corresponding diffusion coef-
ficient. The dimensionality dependent universal function
Yd�x� is known from the localization theory. In the two-
dimensional case it is given by9

Y2�x� = ln x + ��1

2
+

1

x
� , �2�

with the limiting cases Y2�x��x2 /24 for x1 and Y2�x�
� ln x for x�1, where ��x� is the digamma function. In the
three-dimensional case10

Y3�x� = �
n=0

� 	 2


n + 1 + 1
x + 
n + 1

x

−
1


n + 1
2 + 1

x
� , �3�

with the limits Y3�x��x3/2 /48 for x1 and Y3�x��0.605 for
x�1.

The first term in the square brackets of Eq. �1� corre-
sponds to the conventional weak-localization �WL�
correction.9,10 The second term, containing temperature de-
pendent 
�T� factor, which is universal irrespective dimen-
sionality, originates from the interaction corrections in the
Cooper channel, and specifically from the Maki-Thomspon
�MT� diagram.5,6 It was Larkin’s insightful observation7 that
interactions with superconductive fluctuations lead to the
same magnetic-field dependence of the conductivity as in the
case of weak localization. Since 
�T� is strongly temperature
dependent


�T� =
�2

6

1

ln2�T/Tc�
, ln�T/Tc� � 1, �4�


�T� =
�2

4

1

ln�T/Tc�
, ln�T/Tc�  1, �5�

where Tc is the critical temperature of a superconductor,
��d

MT�H� dominates against ��d
WL�H� in the immediate vicin-

ity of the transition when T−Tc�Tc. It is worth emphasizing
that MT contribution remains essential even away from the
critical region as well as stays important in the nonsupercon-
ductive materials, having repulsive interaction in the Cooper
channel, which is in contrast to the Aslamazov-Larkin �AL�
contribution.4 Furthermore, since 
�T��0 for any sing of the
interaction in the Cooper channel, Maki-Thompson correc-
tion reduces the magnetoconductivity in the absolute value.

It turns out, however, that in general Eq. �1� fails to re-
produce experimental observations in both two-11–14 and
three-dimensional15–19 cases, except for the limit of relatively
weak magnetic fields. Careful experimental analysis revealed
that the discrepancy stems from the Maki-Thomposn part of
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Eq. �1�, which ceases to follow ��d
MT�H�=−
�T���d

WL�H�
above the certain magnetic field. Strictly speaking, validity
of Eq. �1� relies essentially on the assumptions

�H � T ln
T

Tc
� T, ��

−1 � T ln
T

Tc
, �6�

which set a lower bound for its applicability in the magnetic
field, so that this discrepancy is not surprising and should be
anticipated. In application to the two-dimensional case this
problem and subsequent generalizations were realized in
Refs. 20–23, for the three-dimensional case there is no the-
oretical formulation, with the noticeable exceptions,24,25

where layered superconductors were considered.
The purpose of the present work is to give a unified and

complete theory of the magnetotransport in the fluctuating
regime of superconductors. We relax on the assumptions of
Eq. �6� and treat the regime of strong magnetic field for both
two- and three-dimensional cases. The essential results can
be summarized as follows: �i� the excess part of fluctuation-
induced magnetoconductivity, including both Maki-
Thompson and Aslamazov-Larkin contributions, saturates to
its negative, zero-field values at already moderate magnetic
fields T ln T

Tc
��H�T for any dimensionality. This fact has

clear physical explanation and is supported by all available
experiments. Indeed, magnetic field can be thought as an
effective depairing factor, which shifts critical temperature
driving the system away from the transition, thus suppressing
fluctuation effects. At the technical level this happens be-
cause magnetic field enters as the mass of the fluctuation
propagator. �ii� Maki-Thompson magnetoconductivity contri-
bution dominates against Aslamazov-Larkin for the most of
the experimentally accessible temperatures, except for the
immediate vicinity of the critical temperature. �iii� A surpris-
ing and rather counterintuitive observation is that closer one
is to the transition temperature weaker magnetic field leads
to magnetoconductivity saturation, since it is controlled by
the ratio �H /T and not by �H itself. This fact is also sup-
ported by the experiments.17,18 Naively one would expect a
completely different scenario, since proximity to a transition
enhances the lifetime for fluctuating Cooper pairs and thus,
stronger field is required to destroy them. �iv� As temperature
is lowered one may observe a dimensional crossover from
three-dimensional case to two dimensional when Ginzburg-
Landau length ��GL� exceeds the thickness �b� of the film,
namely when �GL�
 D

T−Tc
�b. The indication for this possi-

bility is already seen in the experimental results of Ref. 18.
Another possibility is the crossover between MT and AL
contributions which in principle can be realized for thicker
films or in the layered superconductors due to their highly
anisotropic properties.24,25

Quantitatively we find for the Maki-Thompson magneto-
conductivity in the three-dimensional case �hereafter �=c
=kB=1�

��3
MT�H� =

e2

2�2�H
B�T��Y3��H�GL� − Y3��H���� , �7�

where magnetic length �H=
D /�H and Ginzburg-Landau
time �GL

−1 = 8T
� ln T

Tc
were introduced. The universal scaling

function reads as

Y3�x� = 
0

+� dt

t
	��1

2
+ t +

1

x
� − ln�t +

1

x
�� . �8�

The temperature-dependent factor is defined as B�T�
=T�GL / �1−�GL /���. With the help of well-known properties
of the digamma function and for the experimentally relevant
range of magnetic fields, one finds from Eq. �7� following
limiting cases for the magnetoconductivity:

��3
MT�H� = −

e2

96���

1 − �
3
2

1 − �
�T�GL���H���2, �H � ��

−1,

�9�

��3
MT�H� = −

e2

�2��

T�GL

1 − �
��H���

1
2 , ��

−1 � �H � �GL
−1 ,

�10�

��3
MT�H� = − �3

MT�0� +
�2
2 − 1��� 3

2�e2

4��T


 T

�H
, �H � �GL

−1 .

�11�

Here ��x� is the Riemann zeta function, ��=
D�� and �T

=
D /T are dephasing and thermal lengths respectively, and
we introduced �=�GL /�� for compactness. These asymptotes
are valid as long as ����GL. In the opposite limit one has to
interchange ����GL. One sees from Eqs. �9�–�11� that ex-
cess part of the magnetoconductivity goes through the series
of crossovers ��3

MT�H��H2→
H→const, until it saturates
to its negative and magnetic-field independent value

�3
MT�0� =

e2

��T


T�GL

1 + 
�GL/��

. �12�

It is worth emphasizing that Eq. �9�, taken at �→0, can be
recovered from Eq. �1� in the limit when �H���

−1, with the
help of the approximate form of Y3�x� function �Eq. �3��, as
it should be of course. The saturation region is not captured
by Eq. �1�, but recovered correctly �Eq. �11�� within gener-
alized formulation of MT magnetoconductivity. To facilitate
the comparison between the theory �Eq. �7�� and
experiments15–18 we plot on the Fig. 1 the MT magnetocon-
ductivity at different temperatures for the material param-
eters taken from Ref. 17. The inset plot in Fig. 1 emphasizes
quadratic magnetic-field dependence of ��3

MT�H� at the low-
est fields �see Eq. �9��.

For the two-dimensional case magnetoconductivity is de-
termined by the following expression20,22,23

��2
MT�H� =

e2

�
B�T��Y2��H�GL� − Y2��H���� , �13�

where Y2�x� is defined by Eq. �2�. For the same range of
magnetic fields as in Eqs. �9�–�11� one finds from Eq. �13�

��2
MT�H� = −

e2

24�
	1 +

�GL

��
��T�GL���H���2, �H � ��

−1,

�14�
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��2
MT�H� = −

e2

�

T�GL

1 −
�GL

��

ln
�H��

4e�E
, ��

−1 � �H � �GL
−1 ,

�15�

��2
MT�H� = − �2

MT�0� +
�e2

2

T

�H
, �H � �GL

−1 , �16�

where �E=0.57 is the Euler constant. Similarly to the three-
dimensional case MT magnetoconductivity saturates trough
the series of crossovers ��2

MT�H��H2→ ln H→const, to its
field independent value determined by6

�2
MT�0� =

e2

�

T�GL

1 − �GL/��

ln
��

�GL
. �17�

By comparing Eq. �9� to Eq. �14� one concludes that qua-
dratic field dependence, ��d

MT�H��H2, at the lowest fields,
�H���

−1, is apparently universal, in agreement with Eq. �1�,
while magnetoconductivity saturation in the two-dimensional
case is stronger then in the three dimensions.

At this point we discuss the role of Aslamazov-Larkin
contribution to the magnetoconductivity and compare it to
��d

MT�H�. In the two-dimensional case we find

�2
AL�H� =

2e2

�
�T�GL�H2��H�GL� , �18�

H2�x� =
1

x
�1 −

2

x
	��1 +

1

x
� − ��1

2
+

1

x
��� . �19�

With the help of the asymptotic form of H2 function at zero
field, H→0, where H2�x→0�→1 /4, one recovers from Eq.
�18� famous result4

�2
AL�0� =

e2

16

1

ln�T/Tc�
. �20�

Subtracting now �2
AL�0� from Eq. �18� for the two limiting

cases of low, H2�x�� 1
4 �1− x2

8 �, when x1, and high,

H2�x��1 /x, when x�1, magnetic fields one finds

��2
AL�H� = −

e2

16�
�T�GL���H�GL�2, �H � �GL

−1 , �21�

��2
AL�H� = − �2

AL�0� +
2e2

�

T

�H
, �H � �GL

−1 , �22�

which agrees also with the earlier results.24,26,27 Similarly to
Eqs. �9� and �14� the low-field Aslamazov-Larkin magneto-
conductivity is universal and scales quadratically with �H. It
also saturates to the field independent value �Eq. �20�� at
�H��GL

−1 , having the same �1 /H correction as in Eq. �16�.
However, if one compares the magnitude of the MT and AL
contributions, for example at �H��GL

−1 , then it is easy to see
from Eqs. �15� and �21� that ��2

MT�H� dominates against
��2

AL�H� by the logarithmic factor ln��� /�GL� and this ten-
dency persists for the smaller fields. Although ln��� /�GL�
depends on temperature, it actually stays practically constant,
ln��� /�GL��5, at the experimentally addressed range of
temperatures, 1 K�T�10 K in most of the measurements,
see for example Refs. 17 and 18. In the three-dimensional
case expression similar to Eq. �18� can be derived,24 which
brings however the same conclusion about the relative im-
portance of ��3

AL�H� when compared to ��3
MT�H� �Eq. �7��.

It should be emphasized that situation may be different if
�GL���, which may happen in the layered superconductors.
For this case ��d

AL�H� dominates the magnetotransport in the
vicinity of the critical temperature.24,25

In the remaining part of the paper we outline the essential
steps needed to derive Eqs. �7�–�18�. Within the linear re-
sponse Keldysh technique, which is proven to be very effec-
tive tool in application to the transport problems of fluctuat-
ing superconductors,23,28 Maki-Thompson conductivity
correction is determined by the following expression

�d
MT =

e2D

2�
�

q
 

−�

+� d�d�

cosh2 �
2T

Im�LR�q,���

	�CR�q,2� + ���2	coth
�

2T
− tanh

� + �

2T
� . �23�

Here interaction propagator is given by LR�q ,��= �ln T
Tc

+�� Dq2−i�
4�T + 1

2 �−�� 1
2 ��−1, while CR�q ,��= �Dq2− i�+��

−1�−1

stands for the Cooperon. In the three-dimensional case with
magnetic field pointed along the z axes one has Dq2→Dqz

2

+�H�n+1 /2� and momentum summation in Eq. �23� is per-
formed as �q→

�H

4�D�−�
+� dqz

2� �n=0
� , where the prefactor conven-

tionally accounts for the degeneracy in the position of Lan-
dau orbit. Passing to the dimensionless units x=Dqz

2 /T, y

=� /T, z=� /T, and wn=
�H

T �n+1 /2� Eq. �23� can be reduced
to
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FIG. 1. Normalized Maki-Thompson magnetoconductivity for
3d case calculated at T=1.8,3.5,4.4,6.0,8.0 K �top to bottom�
with the corresponding dephasing times ��= �2.24,1.42,1.05,
0.58,0.28�	10−10 s. The material parameters are D=6.37
	10−4 m2 /s and Tc=123 mK that correspond to Ref. 17.
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�3
MT�H� =

e2

2�4�T

�H

T �
n=0

� 
0

+� dx

x
 

−�

+� dzdy

cosh2 z
2

	
y�coth y

2 − tanh z+y
2 �

��x + wn + 1
T�GL

�2 + y2���x + wn + 1
T��

�2 + �2z + y�2� ,

�24�

where we expanded interaction propagator LR�q ,�� at small
frequencies and momenta, assuming max�Dq2 ,��4�T.
One sees from Eq. �24� that the relevant range for z integra-
tion is set by z�1, whereas the width of the Cooperon is
determined by max�x ,wn , �T���−1�1. At the end, this con-
dition limits applicability of Eq. �7� to magnetic fields not
exceeding �H�4�T, which is still sufficient to explain the
magnetoconductivity saturation happening at �H��GL

−1 T.
Under this assumption one is allowed to approximate
�CR�x+wn ,2z+y��2����2z+y� / �x+wn+1 / T��� in Eq. �24�.
Integration over z becomes immediate and gives

�3
MT�H� =

e2

4�3�T

�H

T �
n=0

� 
0

+� dx

x�x + wn + 1

T��
�

	
−�

+� dy

cosh2 y
4

y�coth y
2 − tanh y

4�
��x + wn + 1

T�GL
�2 + y2� . �25�

The y integration can be completed with the same line of
reasoning as in the z case, assuming that
max�x ,wn , �T�GL�−1�1, which is consistent with the previ-
ous step, and gives a factor 2� / �x+wn+1 /T�GL�. After that
step summation over n is straightforward with the help of the

digamma function. Rescaling also x→ ��H /T�t one obtains
from Eq. �25�

�3
MT�H� =

e2

2�2�H
B�T�

0

+� dt

t
	��1

2
+ t +

1

�H�GL
�

− ��1

2
+ t +

1

�H��
�� . �26�

To recover Eq. �12� from Eq. �26� at zero magnetic field one
uses following asymptote �� 1

2 + t+ 1
x �→ ln�t+ 1

x � valid for x

→0 and an integral identity �0
� dt


t
ln� t+a

t+b �=2��
a−
b�. As the
final step one subtracts Eq. �12� from Eq. �26� and arrives at
our major result given by Eq. �7�. Corresponding calcula-
tions for the two-dimensional case �Eq. �13�� as well as deri-
vation of Aslamazov-Larkin contribution �Eq. �18�� are com-
pletely analogous.

In conclusion we have suggested the complete theoretical
description of the magnetotransport in fluctuating regime of
superconductors of different dimensionality. Interaction cor-
rections in the Cooper channel play the dominant role and
are governed by the Maki-Thompson contribution. Suffi-
ciently strong magnetic field suppresses fluctuation effects
completely and magnetoconductivity is determined then by
the weak-localization effect. At the immediate vicinity of the
critical temperature Aslamazov-Larkin correction may be-
come more important and one may observe MT→AL or
dimensional crossovers. These theoretical results are in good
agreement with the experimental observations.15–18
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